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Resonant Hopf triads in a delayed optical pattern-forming system

Yu. A. Logvin and N. A. Loiko
Institute of Physics, Belarus Academy of Sciences, 70 F. Skaryna Avenue, Minsk 220072, Belarus

~Received 27 March 1997!

It is demonstrated that the Hopf spatiotemporal modes can build stable resonant triads in an optical pattern-
forming system with delay. The resonant Hopf triads correspond to dissipative structures in the form of drifting
patterns of rhombic, hexagonal, or rhomboidal symmetry. Multistability of different patterns is found in
numerical simulations.@S1063-651X~97!00809-X#

PACS number~s!: 82.40.Ck, 05.70.Fh, 42.65.Sf, 47.54.1r
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I. INTRODUCTION

Resonant interaction of waves is actively studied in d
ferent branches of nonlinear physics. If quadratic nonline
ity dominates, effective exchange of energy between
modes composing a resonant triad occurs under conditio

V16V26V350, ~1!

k16k26k350, ~2!

whereV i andk i ( i 51,2,3) are frequencies and wave vecto
of resonant modes, respectively. Examples of such reso
triad interaction are well known in plasma physics@1,2#, hy-
drodynamics@3,4#, physics of ferromagnets@5,6#, and non-
linear optics@7#.

In dissipative systems demonstrating spontaneous pa
formation@8#, triadic mode interaction is manifested, first
all, in formation of static hexagonal structures with all fr
quenciesV i being zero and the wave vectorsk i forming an
equilateral triangle. Recently, resonant interaction of o
static (V150) and two Hopf (V252V3) modes has been
discussed in the context of one-dimensional~1D! Turing
structures@9# and two-dimensional~2D! patterns in a nonlin-
ear optical system@10#. Subharmonic instability of a Hop
mode has also been considered in the 1D Brusselator m
@11#.

Here, we continue our previous studies@10,12# of optical
patterns in a single-feedback-mirror system where delay
fects are taken into consideration. In this paper we show
Hopf modes belonging to different families~i.e., differing by
V i and/ork i) may form stable triadic construction. Depen
ing on the relations between the lengths of the vectorsk i ,
emergence of drifting patterns of hexagonal, rhombic,
rhomboidal symmetry may occur. FrequenciesV i determine
the velocity of the drift. Moreover, our numerical simul
tions show that multistability of different triadic Hopf pa
terns is possible.

Triadic Hopf patterns become possible in our system
to interplay between the effects of diffraction and delay o
ing to light propagation in the feedback loop. It is we
known that in a nonlinear system with delay, oscillating
gimes with the frequencies equal to 2p/2t ~where t is a
delay time! and its multiples are possible@13–15#. Thus the
time delay causes Hopf instability in our system. In its tu
diffraction spreading of light, in combination with nonlinea
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mechanisms of light-matter interaction, governs simul
neous excitations of several families of modes~multiconical
emission! @16–19#. The spatial characteristics of these mod
are determined by the Talbot effect well known in opti
@20#. As a result, developing Hopf modes form resonant
ads which satisfy the conditions of phase matching in sp
and in time.

Below, after description of the model, we present resu
of a linear stability analysis and, further, examples of t
triadic Hopf patterns obtained in numerical simulations.

II. MODEL DESCRIPTION

The single-feedback-mirror system in different modific
tions has become very popular in studies of optical patt
formation during the last few years@16–19,10#. Its principal
scheme is presented in Fig. 1. A plane wave light field w
amplitudee0 is incident on a thin layer of nonlinear materia
After transmission through the layer, light is fed back by

FIG. 1. ~a! Single-feedback-mirror optical scheme. See text.~b!
Steady state characteristic determined by Eq.~9! at C53.5 and
d522. The interval of instability is marked by the solid line.
3803 © 1997 The American Physical Society
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3804 56YU. A. LOGVIN AND N. A. LOIKO
mirror which is set parallel to the layer in distanced. Cou-
pling between the transmitted field~amplitudeet) and the
reflected~amplitudeer) is given by the diffractional paraxia
operatorF̂:

er~r' ,t !5F̂et~r' ,t2t![e2 i ~d/k!D'et~r' ,t2t!, ~3!

wherek is the light wave number, andD' is the Laplacian
over transverse coordinatesr'5$x,y%. It is supposed that the
mirror reflectivity is equal to unity, and the distanced con-
tains an integer number of light half wavelengths.

We assume that a film of two-level centers has a thickn
much less than the wavelength of incident light. This allo
us to neglect diffraction and delay during light propagati
inside the film. In this case, the transmitted and exter
incident fields are related as@21#

et~r' ,t !5e02 i2Cr~r' ,t !, ~4!

wherer (r' ,t) is the normalized polarization emitted by th
two-level centers in the film, and the constantC is the bista-
bility parameter@22#.

Interaction of light with two-level centers is described
the optical Bloch equations@23#

ṙ 5~211 id!r 1 iew, ~5!

ẇ52g~w11!1g i ~e* r 2r * e!/2, ~6!

where w is the population difference,d is the frequency
detuning between the incident field and two-level transiti
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and g5T2 /T1 is the ratio between the longitudinal an
transversal relaxation times. The expression for the fiele
driving the centers in the film is given by

e~r' ,t !5e01er~r' ,t !2 i2Cr~r' ,t !. ~7!

It is seen that the total field in the film consists of two fiel
illuminating the layer from both sides, as well as of the s
perradiance field proportional to the polarizationr .

III. STEADY STATE AND STABILITY

The homogeneous steady state solution is given by
following expressions for population difference and polariz
tion:

ws52
11d2

11d21uesu2
, r s5

~d2 i !es

11d21uesu2
, ~8!

with the nonlinear algebraic equation for the steady st
magnitude of the fieldes inside the film:

ue0u25uesu2F S 11
4C

11d21uesu2D 2

1S 4Cd

11d21uesu2D 2G .

~9!

The characteristic presented in Fig. 1~b! shows dependenc
es(e0) for C53.5 andd522. If we increase parameterC
~or decreaseudu), the characteristic becomes bistable@22,24#.

Analyzing stability of the steady state with respect to p
turbationsdw,dr}exp(lt1ik'r') we obtain the eigenvalue
problem:
S D12Cws~11eiu2lt! 0 2ie014Crs

0 D* 12Cws~11e2 iu2l* t! 22ie014Crs*

ige02gCrs* ~31eiu2lt! 2 ige02gCrs~31e2 iu2l* t! 2g
D S dr

dr *

dw
D 5lS dr

dr *

dw
D , ~10!
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whereD5211 id and u5k'
2 d/k is a diffractional param-

eter whose origin is evident due to the form of the diffra
tional operatorF̂ @see Eq.~1!#.

Thick partition of the steady state characteristic in F
1~b! corresponds to the static instabilit
„Re(l)50,Im(l)[V50…. Neutral stability curves for static
instability are marked in Fig. 2~a! by closed solid lines.
These static zones are independent from the delay timet. In
its turn, Hopf instability is absent att50 and appears abov
some threshold value oft @10,12# within the samee0 interval
as the static instability. Boundaries of Hopf instability a
marked by dots in Fig. 2~a! at t518. Due to the transcen
dental structure, the algebraic equation obtained from
~10! has several roots Re(l i).0,V iÞ0, the number of
which grows with increasingt. As a consequence of this, w
can seen in Fig. 2~a! where the secondary Hopf zones a
dipped into the primary ones. Frequencies correspondin
the Hopf boundaries in Fig. 2~a! are plotted versus diffrac
tional parameteru in Fig. 2~b!.

The appearance of new Hopf zones is illustrated m
-

.

q.

to

e

clearly in Fig. 3, where the Hopf frequenciesV i , the phase
slippage created by delayV it, as well as the lower and up
per boundaries of instability domains versus thees axis are
shown with increasingt. One can see that a new zone a
pears with the increase oft in Dt'9. In Fig. 3~a! at small
t(t,20), two values ofV i for each abscissa value can b
seen. They correspond to upper and lower zone bounda
of Fig. 3~c!. For largert, Hopf frequencies are nearly con
stant in the limits of the zone. It should be noted that the d
in Fig. 3 are obtained for fixed diffraction parameteru5u1
as marked in Fig. 2. If we add the Hopf zones which occu
u2, we obtain two times more zones with the frequenc
lying between that in Fig. 3. The curves in Figs. 3~a! and
3~b! confirm a general feature inherent in nonlinear syst
with delay @13,14#: The frequencies are inversely propo
tional to the delay time.

Let us return to Fig. 2~b!, which is the key picture for
understanding of interplay between diffraction and delay
our pattern-forming system. Vertical dashed lines den
critical values ofu at certain chosen incident light amplitud
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56 3805RESONANT HOPF TRIADS IN A DELAYED OPTICAL . . .
(e054.25). Equidistant horizontal lines show average Ho
frequencies. Here,V52p/T ~whereT'2t) is a fundamen-
tal frequency. Note thatT approach 2t with increasingt.
Thus any excited mode is characterized by a ‘‘knot’’ (u i ,V i)
of a lattice in Fig. 2~b!. To proceed with discussion of Fig. 2
let us examine Eq.~10! more carefully. If delay timet is
enough large,V is small~cf. Fig. 3! and the right-hand side
is inessential for determining marginal stability condition

FIG. 2. ~a! Neutral stability curves forC53.5, d522, and
t518. Solid~dotted! curves limit domains of static~Hopf! instabil-
ity. ~b! Hopf frequencies on the boundaries shown in~a!. Points of
static instability are marked with3.

FIG. 3. Dependencies of~a! the Hopf frequenciesV i , ~b! the
phase slippage in the feedback loopV it, and ~c! the unstablees

interval on the delay timet.
f

.

In this case, the condition of the determinant of the matrix
the left-hand side being zero gives the instability thresho
One can see from the matrix that the delay parametert and
the diffraction parameteru enter the equation through th
phase factoreiu2 iVt. If at someu static instability occurs,
this instability takes place also atu12pn, wheren is inte-
ger.u2 andu4 in Fig. 2 showu values for static instability. If
we assume that the phase slippage 2pn is achieved on ac-
count of Vt, we obtain a family of Hopf instabilities with
even frequencies,

Vn5
2p

T
2n, n561,62, . . . . ~11!

To obtain another family of the Hopf modes, we shou
make two shifts inp: one shift along a horizontal line in Fig
2~b! ~e.g., fromu2 to u1) and another shift along a vertica
line. Thus the frequencies of odd modes are

Vn5
2p

T
~2n11!, n50,61,62, . . . . ~12!

Having in mind that eachu zone implies an annulus of un
stable wave vectors on the plane (kx ,ky), we can find a
variety of combinations satisfying conditions of three-wa
mixing, ~1! and~2!. Note that the triadic Hopf-static pattern
@10# ~i.e., patterns created by two Hopf and one static mod!
are particular cases of such mixing. There are only questio
~i! Is a quadratic coupling strong enough to support a re
nant triad and~ii ! will a Hopf triad survive in competition
with other triadic patterns~e.g., ordinary hexagons!? Below
we answer these questions by means of numerical sim
tions.

IV. RESULTS OF SIMULATIONS

We carried out numerical simulations by using an expli
scheme to integrate the Bloch equations and by using the
Fourier transform to propagate an electrical field in fr
space between the film and the mirror. To take into acco
the delay effect, the data were stored in the time inter
@ t,t2t#. A spatial grid of 64364 was commonly used~with
1283128 for checking!. Periodic boundary conditions wer
assumed. The choice of the initial conditions was of imp
tant significance. Initial conditions corresponding to t
ground state of the two-level system (r 50,w521) led to
the triadic Hopf-static states described in Ref.@10#. To obtain
stable resonant Hopf triads, we manipulated the Fourier
age of the pattern in the feedback loop.~It should be noted
that selection and control of patterns by manipulating th
Fourier transform is natural for optical systems because
property of a simple lens@25#!. Namely, having a triadic
Hopf-static pattern at our disposal we filtered static com
nents from the 2D spatial Fourier spectrum and readdres
the Hopf mode from onek' site to another, permitting the
building of pure Hopf resonant constructions. Note that
structures demonstrated below are asymptotically stable
terns which correspond to solutions of the system when
filtering is omitted.

In Fig. 4, a motion of the Hopf pattern is illustrated for th
incident field marked by the dashed line in Fig. 1~a! and for



t

a
ho
fu
pa

e

an

s

th

d

at
f

f

the

the

-

ted.
be

en-
her
ort
ri-

e
evi-

ree

s in
e

lose

nal
ual

the
es

-
rs
c-

d

3806 56YU. A. LOGVIN AND N. A. LOIKO
t518. The patterns in Figs. 4~a!–4~c! are snapshots of ligh
intensity transmitted through the film.~Here and in the pic-
tures below, only one-quarter of the whole simulated are
shown.! The time interval between the subsequent snaps
is t/2 that corresponds to approximately a quarter of the
period. Wave vectors of three Hopf modes composing a
tern are shown in the (kx ,ky) plane in Fig. 4~d!. The modes
with the wave vectorsk1 and k3 oscillating with the fre-
quencyV belong to theu1 band of Fig. 2, whereas the mod
(k2 ,2V) is excited due to the instabilityu2 band. One can
see that spatiotemporal phase matching is fulfilled.

Let us discuss a pattern evolution by writing down
explicit expression for the transmitted light intensity

I 5I dc1
1

2
H1eik1r'1 iVt1

1

2
H2eik2r'1 i2Vt

1
1

2
H3eik3r'1 iVt1c.c., ~13!

whereHi are complex amplitudes of the Hopf modes. A
suming thatH15H3, we can reduce Eq.~13! to

I 5I dc12H1cosS k12k3

2
r'D cosS 1

2
~k2r'12Vt ! D

1H2cos~k2r'12Vt !. ~14!

As it follows from Eq. ~14!, the pattern performs motion
with a velocity 2V/uk2u in the direction2k2 ~see Fig. 4!.
Obviously, because of a symmetry of the system, any o
resonant triad obtained from the one drawn in Fig. 4~d! by
rotation around the origin is also possible. It means that
rection of motion is determined by the initial conditions.

Figure 5 gives further numerical information about p
tern evolution. The curve in Fig. 5~a! presents oscillations o

FIG. 4. ~a!–~c! Snapshots of drifting triadic Hopf pattern ob
tained at three successive moments of time for the paramete
Fig. 2 andue0u54.25.~d! illustrates instantaneous 2D Fourier spe
trum.
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the local transmitted intensity. Figure 5~b! shows phases o
modes running with velocitiesV ~thick line! and 2V ~thin
line!. Of special importance is the sum of the phases of
modes (k1 ,1V), (k3 ,1V), and (2k2 ,22V) which form
the resonant triad. This characteristic is given in Fig. 5 by
horizontal lines at the levels of nearly 0.8p and 21.2p.
Analogously with the cases of the static hexagons@26# and
of the triadic Hopf-static patterns@10# we could refer to our
structure as negative orp triadic Hopf structures if the sum
would be exactly6p ~i.e., the dark spots on the light back
ground are an attribute of negative triadic structures!. How-
ever, our situation appears to be a little more sophistica
This is connected with a motion of the pattern. As can
seen from Fig. 5~a! as well as from Figs. 4~a!–4~c!, a drift of
the pattern leads to the feature that distributions of the int
sity before the dark spot and behind it are not equal. In ot
words, a drifting dark spot leaves something like a sh
‘‘tail.’’ Thus we can refer to our structure as a negative t
adic Hopf structure distorted by a motion.

Another kind of triadic Hopf structure obtained for th
same parameters is presented in Fig. 6. Similar to the pr
ous picture, three snapshots are shown in time intervalt/2.
Here, the distinction from the previous case is that all th
wave vectorsk i @see Fig. 6~d!# have different lengths~i.e.,
three Hopf modes belong to differentu bands of Fig. 2!.
Because of this, the pattern has rhomboidal symmetry. A
Fig. 4, the pattern in Fig. 6 performs a drifting motion in th
direction perpendicular tok12k3. Again, the sum of the
phases of three modes composing the resonant triad is c
but not exactly6p.

Hopf modes can also build the structures of hexago
symmetry. For this, three wave vectors must be of eq
length, i.e., they should belong to the same instabilityu band
in Fig. 2. However, not everyu band is suitable for the
generation of drifting hexagon patterns. Let us note that
composition of two Hopf modes with odd frequenci

of
FIG. 5. Time evolution of~a! the local transmitted intensity an

~b! the phase of the mode (k1 ,1V) in Fig. 4~d! ~thin inclined
curves!, the phase of the mode (k2 ,12V) ~thick inclined curves!,
and the sum of the resonant Hopf modes~thin horizontal curves!.
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56 3807RESONANT HOPF TRIADS IN A DELAYED OPTICAL . . .
(2n11)V will give the mode with even frequency. There
fore, for creation of Hopf hexagons, theu i zones with even
subsciptsi should be used. In Fig. 7~a!, a snapshot of drifting
hexagon structure is shown. Velocity and direction of mot
are evident from consideration of Fig. 7~b!, i.e., the pattern
runs in the direction of the vector2k2 with the velocity
2V/uk2u.

All the patterns presented above are obtained for the s
parameters, i.e., the system demonstrates multistab
Switching from one pattern to another can be achieved
manipulating the Fourier image. We have not had an aim
this paper to find all possible states of the system, but
natural to suppose that the number of possible stable tri
Hopf patterns grows with increasingt.

The circumstance that we have observed patterns sim
to p structures~i.e., dark spots on the light background! is
explained by the fact that our simulations have been car
out for the set of parameters (e054.25) close to the uppe
instability boundary@see Fig. 2~a!#. This matches the proo
in Ref. @10# that negative~positive! Hopf-static structures
should be near the upper~lower! instability boundary, i.e.,
the quadratic coupling changes its sign from upper to low
boundary. Indeed, ate054.22 we have observed positiv
triadic Hopf patterns of rhombic symmetry~like the one in
Fig. 4 with the only difference being inverse contrast! with
the sum of the phases of resonant modes close to zero. H

FIG. 6. Triadic Hopf pattern composed of the modes with th
different ki and obtained at the same parameters as the patte
Fig. 4. ~a!–~c! are three snapshots.~d! illustrates instantaneous 2D
Fourier spectrum.
n

e
y.
y

in
is
ic

ar

d

r

w-

ever, this pattern was not asymptotically stable and a
transient time changed into positive static hexagons.

V. CONCLUSION

We have shown that an optical pattern-forming syst
demonstrates a dissipative structure which is a result of m
ing of three Hopf modes. In our concrete case, the H
instability is determined by the delay effect. In general, tim
delay is important as far as it introduces infinite degrees
freedom into dynamical system@14,15#. One might deduce
that the resonant Hopf triad may be observed in a nonlin
pattern-forming system without delay when there are eno
internal degrees of freedom to provide multiple Hopf bifu
cations.

We have not taken into account transverse diffusion
our model. Evidently, the diffusion processes will suppre
the instabilityu i zones with large indexi so that large-scale
structures should be preferred in real experiments.

Recently, the modifications of the single-feedback-mir
scheme have been considered which imply either a ti
mirror @27,28# or a nonlocal interaction introduced by
translation@29#. Both these modifications cause a static p
tern to run along a prescribed direction. In other words,
static instability turns into the Hopf one, and thus there a
pear favorable conditions for emergence of triadic Hopf p
terns.

e
in

FIG. 7. ~a! Triadic Hopf structure in the form of drifting hexa
gons and~b! its Fourier image.
n
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