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Resonant Hopf triads in a delayed optical pattern-forming system
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It is demonstrated that the Hopf spatiotemporal modes can build stable resonant triads in an optical pattern-
forming system with delay. The resonant Hopf triads correspond to dissipative structures in the form of drifting
patterns of rhombic, hexagonal, or rhomboidal symmetry. Multistability of different patterns is found in
numerical simulationd.51063-651X97)00809-X|

PACS numbe(s): 82.40.Ck, 05.70.Fh, 42.65.Sf, 47.54.

I. INTRODUCTION mechanisms of light-matter interaction, governs simulta-
neous excitations of several families of modpsuilticonical
Resonant interaction of waves is actively studied in dif-emission[16—19. The spatial characteristics of these modes
ferent branches of nonlinear physics. If quadratic nonlinearare determined by the Talbot effect well known in optics
ity dominates, effective exchange of energy between th¢20]. As a result, developing Hopf modes form resonant tri-
modes composing a resonant triad occurs under conditionsads which satisfy the conditions of phase matching in space

and in time.
0,£0,+=053=0, (1) Below, after description of the model, we present results
of a linear stability analysis and, further, examples of the
k;*k,* k=0, (2 triadic Hopf patterns obtained in numerical simulations.
where(); andk; (i=1,2,3) are frequencies and wave vectors Il. MODEL DESCRIPTION
of resonant modes, respectively. Examples of such resonant ) ) o .
triad interaction are well known in plasma physids2], hy- _ The single-feedback-mirror system in dlfferent_ modifica-
drodynamicg3,4], physics of ferromagnet, 6], and non- tions h_as beqome very popular in studies of opnpal_pattern
linear optics[7]. formation during the last few yeaf46—19,1Q. Its principal

In dissipative systems demonstrating spontaneous pattefigheéme is presented in Fig. 1. A plane wave light field with
formation[8], triadic mode interaction is manifested, first of @mplitudee, is incident on a thin layer of nonlinear material.
all, in formation of static hexagonal structures with all fre- After transmission through the layer, light is fed back by a
quencieX); being zero and the wave vectdesforming an
equilateral triangle. Recently, resonant interaction of one (a)
static (2,=0) and two Hopf (2,= — ;) modes has been

discussed in the context of one-dimensiofaD) Turing i
structureg 9] and two-dimensionalD) patterns in a nonlin- €o €
ear optical systenil0]. Subharmonic instability of a Hopf A ] .
mode has also been considered in the 1D Brusselator model ol —— dl z
[11]. e,
Here, we continue our previous studid®,12 of optical E
patterns in a single-feedback-mirror system where delay ef- thin film mirlror

fects are taken into consideration. In this paper we show that

Hopf modes belonging to different familiése., differing by

Q,; and/ork;) may form stable triadic construction. Depend- le.| (b)

ing on the relations between the lengths of the veckpts

emergence of drifting patterns of hexagonal, rhombic, or 6

rhomboidal symmetry may occur. Frequencigsdetermine

the velocity of the drift. Moreover, our numerical simula- 4

tions show that multistability of different triadic Hopf pat-

terns is possible. 2
Triadic Hopf patterns become possible in our system due

to interplay between the effects of diffraction and delay ow- O bt Lesiit.,

ing to light propagation in the feedback loop. It is well 4 41 42 43 44 45

known that in a nonlinear system with delay, oscillating re- le|

gimes with the frequencies equal tar2+ (where 7 is a

delay timg and its multiples are possibl@3—-15. Thus the FIG. 1. (a) Single-feedback-mirror optical scheme. See tét.

time delay causes Hopf instability in our system. In its turn,Steady state characteristic determined by Bj.at C=3.5 and

diffraction spreading of light, in combination with nonlinear §=—2. The interval of instability is marked by the solid line.
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mirror which is set parallel to the layer in distandeCou- and y=T,/T, is the ratio between the longitudinal and
pling between the transmitted fiel@mplitudee;) and the transversal relaxation times. The expression for the feeld
reflected(amplitudee,) is given by the diffractional paraxial driving the centers in the film is given by

operatort: e(r, t)y=epte(r, ,t)—i2Cr(r ). @

e (r, t)=Fe(r, t—7m)=e @iig(r t—7), (3) Itis seen that the total field in the film consists of two fields
. ] ) ) illuminating the layer from both sides, as well as of the su-
over transverse coordinates={x,y}. It is supposed that the
mirror reflectivity is equal to unity, and the distandecon- Ill. STEADY STATE AND STABILITY

tains an integer number of light half wavelengths. S
The homogeneous steady state solution is given by the

We assume that a film of two-level centers has a thicknes - - - . !
much less than the wavelength of incident light. This allows0!loWing expressions for population difference and polariza-

us to neglect diffraction and delay during light propagationto™:

inside the film. In this case, the transmitted and external 14 82 (5—i)e
incident fields are related 81] We=m— —————, fm—————— (8)
1+ 6%+ |ed? 1+ 6%+ |eg?
er, ,t)y=ep—i2Cr(r,,t), (4)

with the nonlinear algebraic equation for the steady state
wherer(r, ,t) is the normalized polarization emitted by the magnitude of the fiel&; inside the film:
two-level centers in the film, and the constéhts the bista-

2 2
bility parametef22]. leg2=leg? [ 1+ 4C6
Interaction of light with two-level centers is described by ob —i%s 1+ 8%+]|ed? 1+ 82+ed?] |
the optical Bloch equation23] 9)
r=(—1+id)r+iew, (5)  The characteristic presented in Figbjlshows dependence
es(eg) for C=3.5 andé=—2. If we increase paramet&
W= —y(W+1)+yi(e*r—r*e)/2, (6)  (ordecreased|), the characteristic becomes bistal#@,24.

Analyzing stability of the steady state with respect to per-
where w is the population differenced is the frequency turbationséw, ér <exp(t+ik,r,) we obtain the eigenvalue
detuning between the incident field and two-level transitionproblem:

A+2Cwg(1+€?77) 0 2ieg+4Cry Sr Sr
0 A*+2Cwy(1+e 107N —2ieg+4Cry | | sr* | =\| or* |, (10
iyeo—yCri(3+€'9*)  —jye,—yCry(3+e 1027 —y ow Sw

whereA=—-1+i6 and 6=kfd/k is a diffractional param- clearly in Fig. 3, where the Hopf frequenci€s, the phase
eter whose origin is evident due to the form of the diffrac-slippage created by deldy; r, as well as the lower and up-
tional operatorlE [see Eq(D)]. per boundaries of instability domains versus theaxis are
Thick partition of the steady state characteristic in Fig.shown with increasing. One can see that a new zone ap-
1(b) corresponds to the static instability pears with the increase afin A7=~9. In Fig. 3a at small
(Re(™)=0,Im(\)=Q=0). Neutral stability curves for static 7(7<20), two values of(}; for each abscissa value can be
instability are marked in Fig. (@ by closed solid lines. seen. They correspond to upper and lower zone boundaries
These static zones are independent from the delay tile  of Fig. 3(c). For largerr, Hopf frequencies are nearly con-
its turn, Hopf instability is absent at=0 and appears above stant in the limits of the zone. It should be noted that the data
some threshold value 6f[10,12 within the sames; interval  in Fig. 3 are obtained for fixed diffraction parametes 0,
as the static instability. Boundaries of Hopf instability are as marked in Fig. 2. If we add the Hopf zones which occur at
marked by dots in Fig. (@) at =18. Due to the transcen- 6,, we obtain two times more zones with the frequencies
dental structure, the algebraic equation obtained from Edying between that in Fig. 3. The curves in Figga3and
(10) has several roots Re()>0,);#0, the number of 3(b) confirm a general feature inherent in nonlinear system
which grows with increasing. As a consequence of this, we with delay [13,14]: The frequencies are inversely propor-
can seen in Fig. (@) where the secondary Hopf zones aretional to the delay time.
dipped into the primary ones. Frequencies corresponding to Let us return to Fig. @), which is the key picture for
the Hopf boundaries in Fig.(8) are plotted versus diffrac- understanding of interplay between diffraction and delay in
tional parametep in Fig. 2(b). our pattern-forming system. Vertical dashed lines denote
The appearance of new Hopf zones is illustrated moreritical values off at certain chosen incident light amplitude
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4.3 ; ; . . In this case, the condition of the determinant of the matrix in
legl : : : : the left-hand side being zero gives the instability threshold.
405 One can see from the matrix that the delay parametand

: the diffraction parametep enter the equation through the
phase factoe'?~ 7. If at somed static instability occurs,
4.2 this instability takes place also &t+2mn, wheren is inte-
; ; . ‘ ger.f, andé, in Fig. 2 showd values for static instability. If
415 Lo b L : we assume that the phase slippagen2is achieved on ac-
"0 0 n 6,2n  08;3n _ 0,4n count of O 7, we obtain a family of Hopf instabilities with
even frequencies,
0 i A -
(7)) i 1 30 1 2 _277 _
Q@ 05 PR e Q,=—2n, n=*x1+2 .... (11
S QL T
$ E Q ! :
=1 T T To obtain another family of the Hopf modes, we should
o 0 ‘ Yo , make two shifts inm: one shift along a horizontal line in Fig.
e *"'" """" 29*""" """" 2(b) (e.g., from6, to 6;) and another shift along a vertical
"g_ -------- ------- -" 3(2 ------- -—+’ line. Thus the frequencies of odd modes are
T T T e T T 2
. L L . Qn=?(2n+1), n=0,+1,+2,.... (12
0 0, n 8,2n  0;3n  6,4nm
0 Having in mind that eacl® zone implies an annulus of un-

stable wave vectors on the plank,(k,), we can find a
variety of combinations satisfying conditions of three-wave
mixing, (1) and(2). Note that the triadic Hopf-static patterns
[10] (i.e., patterns created by two Hopf and one static mpdes
are particular cases of such mixing. There are only questions:
f(i) Is a quadratic coupling strong enough to support a reso-
nant triad and(ii) will a Hopf triad survive in competition
with other triadic patternge.g., ordinary hexagoj® Below

we answer these questions by means of numerical simula-
tions.

FIG. 2. (@) Neutral stability curves folC=3.5, §=—2, and
7=18. Solid(dotted curves limit domains of stati(Hopf) instabil-
ity. (b) Hopf frequencies on the boundaries showr{an Points of
static instability are marked witlx.

(eg=4.25). Equidistant horizontal lines show average Hop
frequencies. Hered =2#7/T (whereT~27) is a fundamen-
tal frequency. Note thal approach 2 with increasingr.
Thus any excited mode is characterized by a “kno#; ;)

of a lattice in Fig. 2b). To proceed with discussion of Fig. 2,
let us examine Eq(10) more carefully. If delay timer is
enough largef) is small(cf. Fig. 3 and the right-hand side IV. RESULTS OF SIMULATIONS

is inessential for determining marginal stability conditions. \ve carried out numerical simulations by using an explicit

scheme to integrate the Bloch equations and by using the fast

Q 08 : Fourier transform to propagate an electrical field in free
06 . space between the film and the mirror. To take into account
04t the delay effect, the data were stored in the time interval
0o b [t,t—7]. A spatial grid of 64 64 was commonly use@vith

0 128%x 128 for checking Periodic boundary conditions were
assumed. The choice of the initial conditions was of impor-
oz 25 ® tant significance. Initial conditions corresponding to the

n OF . ground state of the two-level system=0w=—1) led to
15 ¢ the triadic Hopf-static states described in R&0]. To obtain
10 ¢ stable resonant Hopf triads, we manipulated the Fourier im-

5t age of the pattern in the feedback lodfi.should be noted
0 that selection and control of patterns by manipulating their
el 4 Fourier transform is natural for optical systems because of a
° property of a simple len§25]). Namely, having a triadic
35¢ Hopf-static pattern at our disposal we filtered static compo-
3 nents from the 2D spatial Fourier spectrum and readdressed
the Hopf mode from oné, site to another, permitting the
2.5 0 building of pure Hopf resonant constructions. Note that all

structures demonstrated below are asymptotically stable pat-

terns which correspond to solutions of the system when any
FIG. 3. Dependencies dB) the Hopf frequencies);, (b) the filtering is omitted.

phase slippage in the feedback lofr, and (c) the unstablee, In Fig. 4, a motion of the Hopf pattern is illustrated for the

interval on the delay time.. incident field marked by the dashed line in Figa)land for
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FIG. 4. (8—(c) Snapshots of drifting triadic Hopf pattern ob-  F|G. 5. Time evolution ofa) the local transmitted intensity and
tained at three successive moments of time for the parameters gh) the phase of the modek{,+Q) in Fig. 4(d) (thin inclined
Fig. 2 and|eo| =4.25.(d) illustrates instantaneous 2D Fourier spec- curves, the phase of the modé4, +2Q) (thick inclined curvel
trum. and the sum of the resonant Hopf mod#sn horizontal curves

7=18. The patterns in Figs(#—4(c) are snapshots of light the local transmitted intensity. Figurét shows phases of
intensity transmitted through the filniHere and in the pic- modes running with velocitie§) (thick line) and ) (thin
tures below, only one-quarter of the whole simulated area i$ne). Of special importance is the sum of the phases of the
shown) The time interval between the subsequent snapshotxodes k;,+Q), (k3,+Q), and (—k,,—2Q) which form

is 7/2 that corresponds to approximately a quarter of the fulthe resonant triad. This characteristic is given in Fig. 5 by the
period. Wave vectors of three Hopf modes composing a patiorizontal lines at the levels of nearly @:8and —1.27.

tern are shown in thek( ,k,) plane in Fig. 4d). The modes Analogously with the cases of the static hexagf2® and
with the wave vectork, and k3 oscillating with the fre-  of the triadic Hopf-static patterrid0] we could refer to our
quency( belong to thed; band of Fig. 2, whereas the mode Structure as negative ar triadic Hopf structures if the sum
(k,,2Q) is excited due to the instability, band. One can would be exactly+ 7 (i.e., the dark spots on the light back-

see that spatiotemporal phase matching is fulfilled. ground are an attribute of negative triadic structuréew-
Let us discuss a pattern evolution by writing down anever, our situation appears to be a little more sophisticated.
explicit expression for the transmitted light intensity This is connected with a motion of the pattern. As can be

seen from Fig. &) as well as from Figs. @) —4(c), a drift of

the pattern leads to the feature that distributions of the inten-
sity before the dark spot and behind it are not equal. In other
words, a drifting dark spot leaves something like a short
“tail.” Thus we can refer to our structure as a negative tri-
adic Hopf structure distorted by a motion.

Another kind of triadic Hopf structure obtained for the
whereH; are complex amplitudes of the Hopf modes. As-Same parameters is presented in Fig. 6. Similar to the previ-
suming thatH,=Hs, we can reduce Eq13) to ous picture, three snapshots are shown in time interfal

Here, the distinction from the previous case is that all three

1 . ) 1 ) _
I =Idc—{—zHle'k1u+lm+§Hzelkzrlﬂzm

1 ) )
+ §H3e'k3rl+'m+c.c., (13

ki—ks 1 wave vectorsk; [see Fig. &)] have different lengthsi.e.,
|:|d0+2HlCO{ 5 U)005<§(|<2TL+ZQU) three Hopf modes belong to differedt bands of Fig. 2
Because of this, the pattern has rhomboidal symmetry. As in
+Hycoqk,r, +20t). (14 Fig. 4, the pattern in Fig. 6 performs a drifting motion in the

direction perpendicular td&k;—ks. Again, the sum of the

As it follows from Eq. (14), the pattern performs motion phases of three modes composing the resonant triad is close
with a velocity 20/|k,| in the direction—k, (see Fig. 4  but not exactly= 7.
Obviously, because of a symmetry of the system, any other Hopf modes can also build the structures of hexagonal
resonant triad obtained from the one drawn in Figl)dy  symmetry. For this, three wave vectors must be of equal
rotation around the origin is also possible. It means that dilength, i.e., they should belong to the same instabé#ityand
rection of motion is determined by the initial conditions.  in Fig. 2. However, not every band is suitable for the

Figure 5 gives further numerical information about pat-generation of drifting hexagon patterns. Let us note that the
tern evolution. The curve in Fig.(8 presents oscillations of composition of two Hopf modes with odd frequencies
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FIG. 6. Triadic Hopf pattern composed of the modes with three ko, -4€2 ki, -2Q

differentk; and obtained at the same parameters as the pattern in

Fig. 4.(8)—(c) are three snapshot@) illustrates instantaneous 2D /G- 7- (8 Triadic Hopf structure in the form of drifting hexa-
Fourier spectrum. gons andb) its Fourier image.

ever, this pattern was not asymptotically stable and after

(2n+1)Q will give the mode with even frequency. There- transient time changed into positive static hexagons.

fore, for creation of Hopf hexagons, tl& zones with even
subscipts should be used. In Fig(&), a snapshot of drifting

hexagon structure is shown. Velocity and direction of motion V. CONCLUSION

are evident from consideration of Fig(bJ, i.e., the pattern We have shown that an optical pattern-forming system
runs in the direction of the vector k, with the velocity — demonstrates a dissipative structure which is a result of mix-
201k, ing of three Hopf modes. In our concrete case, the Hopf

All the patterns presented above are obtained for the saniastability is determined by the delay effect. In general, time
parameters, i.e., the system demonstrates multistabilitydelay is important as far as it introduces infinite degrees of
Switching from one pattern to another can be achieved byreedom into dynamical systefi4,15. One might deduce
manipulating the Fourier image. We have not had an aim inhat the resonant Hopf triad may be observed in a nonlinear
this paper to find all possible states of the system, but it iattern-forming system without delay when there are enough
natural to suppose that the number of possible stable triadigternal degrees of freedom to provide multiple Hopf bifur-
Hopf patterns grows with increasing cations.

The circumstance that we have observed patterns similar We have not taken into account transverse diffusion in
to = structures(i.e., dark spots on the light backgroyrid  our model. Evidently, the diffusion processes will suppress
explained by the fact that our simulations have been carrie¢the instability §; zones with large indek so that large-scale
out for the set of parametergd=4.25) close to the upper structures should be preferred in real experiments.
instability boundarysee Fig. 2a)]. This matches the proof Recently, the modifications of the single-feedback-mirror
in Ref. [10] that negative(positive Hopf-static structures scheme have been considered which imply either a tilted
should be near the uppélower) instability boundary, i.e., mirror [27,28 or a nonlocal interaction introduced by a
the quadratic coupling changes its sign from upper to lowetranslation[29]. Both these modifications cause a static pat-
boundary. Indeed, at,=4.22 we have observed positive tern to run along a prescribed direction. In other words, the
triadic Hopf patterns of rhombic symmet(ike the one in  static instability turns into the Hopf one, and thus there ap-
Fig. 4 with the only difference being inverse contjasith ~ pear favorable conditions for emergence of triadic Hopf pat-
the sum of the phases of resonant modes close to zero. Howerns.
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